please dont rip this site
/*
 * Reed-Solomon coding and decoding
 * Phil Karn (karn at ka9q.ampr.org) September 1996
 * 
 * This file is derived from the program "new_rs_erasures.c" by Robert
 * Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy
 * (harit at spectra.eng.hawaii.edu), Aug 1995
 *
 * I've made changes to improve performance, clean up the code and make it
 * easier to follow. Data is now passed to the encoding and decoding functions
 * through arguments rather than in global arrays. The decode function returns
 * the number of corrected symbols, or -1 if the word is uncorrectable.
 *
 * This code supports a symbol size from 2 bits up to 16 bits,
 * implying a block size of 3 2-bit symbols (6 bits) up to 65535
 * 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h.
 *
 * Note that if symbols larger than 8 bits are used, the type of each
 * data array element switches from unsigned char to unsigned int. The
 * caller must ensure that elements larger than the symbol range are
 * not passed to the encoder or decoder.
 *
 */
#include <stdio.h>
#include "rs.h"

#if (KK >= NN)
#error "KK must be less than 2**MM - 1"
#endif

/* This defines the type used to store an element of the Galois Field
 * used by the code. Make sure this is something larger than a char if
 * if anything larger than GF(256) is used.
 *
 * Note: unsigned char will work up to GF(256) but int seems to run
 * faster on the Pentium.
 */
typedef int gf;

/* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A,
 * and  Lee & Messerschmitt, Digital Communication p. 453.
 */
#if(MM == 2)/* Admittedly silly */
int Pp[MM+1] = { 1, 1, 1 };

#elif(MM == 3)
/* 1 + x + x^3 */
int Pp[MM+1] = { 1, 1, 0, 1 };

#elif(MM == 4)
/* 1 + x + x^4 */
int Pp[MM+1] = { 1, 1, 0, 0, 1 };

#elif(MM == 5)
/* 1 + x^2 + x^5 */
int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 };

#elif(MM == 6)
/* 1 + x + x^6 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 };

#elif(MM == 7)
/* 1 + x^3 + x^7 */
int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 };

#elif(MM == 8)
/* 1+x^2+x^3+x^4+x^8 */
int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 };

#elif(MM == 9)
/* 1+x^4+x^9 */
int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };

#elif(MM == 10)
/* 1+x^3+x^10 */
int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 11)
/* 1+x^2+x^11 */
int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 12)
/* 1+x+x^4+x^6+x^12 */
int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };

#elif(MM == 13)
/* 1+x+x^3+x^4+x^13 */
int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 14)
/* 1+x+x^6+x^10+x^14 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };

#elif(MM == 15)
/* 1+x+x^15 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 16)
/* 1+x+x^3+x^12+x^16 */
int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };

#else
#error "MM must be in range 2-16"
#endif

/* Alpha exponent for the first root of the generator polynomial */
#define B0	1

/* index->polynomial form conversion table */
gf Alpha_to[NN + 1];

/* Polynomial->index form conversion table */
gf Index_of[NN + 1];

/* No legal value in index form represents zero, so
 * we need a special value for this purpose
 */
#define A0	(NN)

/* Generator polynomial g(x)
 * Degree of g(x) = 2*TT
 * has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1)
 */
gf Gg[NN - KK + 1];

/* Compute x % NN, where NN is 2**MM - 1,
 * without a slow divide
 */
static inline gf
modnn(int x)
{
	while (x >= NN) {
		x -= NN;
		x = (x >> MM) + (x & NN);
	}
	return x;
}

#define	min(a,b)	((a) < (b) ? (a) : (b))

#define	CLEAR(a,n) {\
	int ci;\
	for(ci=(n)-1;ci >=0;ci--)\
		(a)[ci] = 0;\
	}

#define	COPY(a,b,n) {\
	int ci;\
	for(ci=(n)-1;ci >=0;ci--)\
		(a)[ci] = (b)[ci];\
	}
#define	COPYDOWN(a,b,n) {\
	int ci;\
	for(ci=(n)-1;ci >=0;ci--)\
		(a)[ci] = (b)[ci];\
	}

void init_rs(void)
{
	generate_gf();
	gen_poly();
}

/* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
                   polynomial form -> index form  index_of[j=alpha**i] = i
   alpha=2 is the primitive element of GF(2**m)
   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
        Let @ represent the primitive element commonly called "alpha" that
   is the root of the primitive polynomial p(x). Then in GF(2^m), for any
   0 <= i <= 2^m-2,
        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
   example the polynomial representation of @^5 would be given by the binary
   representation of the integer "alpha_to[5]".
                   Similarily, index_of[] can be used as follows:
        As above, let @ represent the primitive element of GF(2^m) that is
   the root of the primitive polynomial p(x). In order to find the power
   of @ (alpha) that has the polynomial representation
        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
   we consider the integer "i" whose binary representation with a(0) being LSB
   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
   "index_of[i]". Now, @^index_of[i] is that element whose polynomial 
    representation is (a(0),a(1),a(2),...,a(m-1)).
   NOTE:
        The element alpha_to[2^m-1] = 0 always signifying that the
   representation of "@^infinity" = 0 is (0,0,0,...,0).
        Similarily, the element index_of[0] = A0 always signifying
   that the power of alpha which has the polynomial representation
   (0,0,...,0) is "infinity".
 
*/

void
generate_gf(void)
{
	register int i, mask;

	mask = 1;
	Alpha_to[MM] = 0;
	for (i = 0; i < MM; i++) {
		Alpha_to[i] = mask;
		Index_of[Alpha_to[i]] = i;
		/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
		if (Pp[i] != 0)
			Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */
		mask <<= 1;	/* single left-shift */
	}
	Index_of[Alpha_to[MM]] = MM;
	/*
	 * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
	 * poly-repr of @^i shifted left one-bit and accounting for any @^MM
	 * term that may occur when poly-repr of @^i is shifted.
	 */
	mask >>= 1;
	for (i = MM + 1; i < NN; i++) {
		if (Alpha_to[i - 1] >= mask)
			Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
		else
			Alpha_to[i] = Alpha_to[i - 1] << 1;
		Index_of[Alpha_to[i]] = i;
	}
	Index_of[0] = A0;
	Alpha_to[NN] = 0;
}


/*
 * Obtain the generator polynomial of the TT-error correcting, length
 * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
 * ... ,(2*TT-1)
 *
 * Examples:
 *
 * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
 * g(x) = (x+@) (x+@**2)
 *
 * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
 * g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
 */
void
gen_poly(void)
{
	register int i, j;

	Gg[0] = Alpha_to[B0];
	Gg[1] = 1;		/* g(x) = (X+@**B0) initially */
	for (i = 2; i <= NN - KK; i++) {
		Gg[i] = 1;
		/*
		 * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
		 * (@**(B0+i-1) + x)
		 */
		for (j = i - 1; j > 0; j--)
			if (Gg[j] != 0)
				Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)];
			else
				Gg[j] = Gg[j - 1];
		/* Gg[0] can never be zero */
		Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)];
	}
	/* convert Gg[] to index form for quicker encoding */
	for (i = 0; i <= NN - KK; i++)
		Gg[i] = Index_of[Gg[i]];
}


/*
 * take the string of symbols in data[i], i=0..(k-1) and encode
 * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
 * is input and bb[] is output in polynomial form. Encoding is done by using
 * a feedback shift register with appropriate connections specified by the
 * elements of Gg[], which was generated above. Codeword is   c(X) =
 * data(X)*X**(NN-KK)+ b(X)
 */
int
encode_rs(dtype data[KK], dtype bb[NN-KK])
{
	register int i, j;
	gf feedback;

	CLEAR(bb,NN-KK);
	for (i = KK - 1; i >= 0; i--) {
#if (MM != 8)
		if(data[i] > NN)
			return -1;	/* Illegal symbol */
#endif
		feedback = Index_of[data[i] ^ bb[NN - KK - 1]];
		if (feedback != A0) {	/* feedback term is non-zero */
			for (j = NN - KK - 1; j > 0; j--)
				if (Gg[j] != A0)
					bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)];
				else
					bb[j] = bb[j - 1];
			bb[0] = Alpha_to[modnn(Gg[0] + feedback)];
		} else {	/* feedback term is zero. encoder becomes a
				 * single-byte shifter */
			for (j = NN - KK - 1; j > 0; j--)
				bb[j] = bb[j - 1];
			bb[0] = 0;
		}
	}
	return 0;
}

/*
 * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
 * writes the codeword into data[] itself. Otherwise data[] is unaltered.
 *
 * Return number of symbols corrected, or -1 if codeword is illegal
 * or uncorrectable.
 * 
 * First "no_eras" erasures are declared by the calling program. Then, the
 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
 * If the number of channel errors is not greater than "t_after_eras" the
 * transmitted codeword will be recovered. Details of algorithm can be found
 * in R. Blahut's "Theory ... of Error-Correcting Codes".
 */
int
eras_dec_rs(dtype data[NN], int eras_pos[NN-KK], int no_eras)
{
	int deg_lambda, el, deg_omega;
	int i, j, r;
	gf u,q,tmp,num1,num2,den,discr_r;
	gf recd[NN];
	gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly
						 * and syndrome poly */
	gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
	gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
	int syn_error, count;

	/* data[] is in polynomial form, copy and convert to index form */
	for (i = NN-1; i >= 0; i--){
#if (MM != 8)
		if(data[i] > NN)
			return -1;	/* Illegal symbol */
#endif
		recd[i] = Index_of[data[i]];
	}
	/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
	 * namely @**(B0+i), i = 0, ... ,(NN-KK-1)
	 */
	syn_error = 0;
	for (i = 1; i <= NN-KK; i++) {
		tmp = 0;
		for (j = 0; j < NN; j++)
			if (recd[j] != A0)	/* recd[j] in index form */
				tmp ^= Alpha_to[modnn(recd[j] + (B0+i-1)*j)];
		syn_error |= tmp;	/* set flag if non-zero syndrome =>
					 * error */
		/* store syndrome in index form  */
		s[i] = Index_of[tmp];
	}
	if (!syn_error) {
		/*
		 * if syndrome is zero, data[] is a codeword and there are no
		 * errors to correct. So return data[] unmodified
		 */
		return 0;
	}
	CLEAR(&lambda[1],NN-KK);
	lambda[0] = 1;
	if (no_eras > 0) {
		/* Init lambda to be the erasure locator polynomial */
		lambda[1] = Alpha_to[eras_pos[0]];
		for (i = 1; i < no_eras; i++) {
			u = eras_pos[i];
			for (j = i+1; j > 0; j--) {
				tmp = Index_of[lambda[j - 1]];
				if(tmp != A0)
					lambda[j] ^= Alpha_to[modnn(u + tmp)];
			}
		}
#ifdef ERASURE_DEBUG
		/* find roots of the erasure location polynomial */
		for(i=1;i<=no_eras;i++)
			reg[i] = Index_of[lambda[i]];
		count = 0;
		for (i = 1; i <= NN; i++) {
			q = 1;
			for (j = 1; j <= no_eras; j++)
				if (reg[j] != A0) {
					reg[j] = modnn(reg[j] + j);
					q ^= Alpha_to[reg[j]];
				}
			if (!q) {
				/* store root and error location
				 * number indices
				 */
				root[count] = i;
				loc[count] = NN - i;
				count++;
			}
		}
		if (count != no_eras) {
			printf("\n lambda(x) is WRONG\n");
			return -1;
		}
#ifndef NO_PRINT
		printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
		for (i = 0; i < count; i++)
			printf("%d ", loc[i]);
		printf("\n");
#endif
#endif
	}
	for(i=0;i<NN-KK+1;i++)
		b[i] = Index_of[lambda[i]];

	/*
	 * Begin Berlekamp-Massey algorithm to determine error+erasure
	 * locator polynomial
	 */
	r = no_eras;
	el = no_eras;
	while (++r <= NN-KK) {	/* r is the step number */
		/* Compute discrepancy at the r-th step in poly-form */
		discr_r = 0;
		for (i = 0; i < r; i++){
			if ((lambda[i] != 0) && (s[r - i] != A0)) {
				discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
			}
		}
		discr_r = Index_of[discr_r];	/* Index form */
		if (discr_r == A0) {
			/* 2 lines below: B(x) <-- x*B(x) */
			COPYDOWN(&b[1],b,NN-KK);
			b[0] = A0;
		} else {
			/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
			t[0] = lambda[0];
			for (i = 0 ; i < NN-KK; i++) {
				if(b[i] != A0)
					t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
				else
					t[i+1] = lambda[i+1];
			}
			if (2 * el <= r + no_eras - 1) {
				el = r + no_eras - el;
				/*
				 * 2 lines below: B(x) <-- inv(discr_r) *
				 * lambda(x)
				 */
				for (i = 0; i <= NN-KK; i++)
					b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
			} else {
				/* 2 lines below: B(x) <-- x*B(x) */
				COPYDOWN(&b[1],b,NN-KK);
				b[0] = A0;
			}
			COPY(lambda,t,NN-KK+1);
		}
	}

	/* Convert lambda to index form and compute deg(lambda(x)) */
	deg_lambda = 0;
	for(i=0;i<NN-KK+1;i++){
		lambda[i] = Index_of[lambda[i]];
		if(lambda[i] != A0)
			deg_lambda = i;
	}
	/*
	 * Find roots of the error+erasure locator polynomial. By Chien
	 * Search
	 */
	COPY(&reg[1],&lambda[1],NN-KK);
	count = 0;		/* Number of roots of lambda(x) */
	for (i = 1; i <= NN; i++) {
		q = 1;
		for (j = deg_lambda; j > 0; j--)
			if (reg[j] != A0) {
				reg[j] = modnn(reg[j] + j);
				q ^= Alpha_to[reg[j]];
			}
		if (!q) {
			/* store root (index-form) and error location number */
			root[count] = i;
			loc[count] = NN - i;
			count++;
		}
	}

#ifdef DEBUG
	printf("\n Final error positions:\t");
	for (i = 0; i < count; i++)
		printf("%d ", loc[i]);
	printf("\n");
#endif
	if (deg_lambda != count) {
		/*
		 * deg(lambda) unequal to number of roots => uncorrectable
		 * error detected
		 */
		return -1;
	}
	/*
	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
	 * x**(NN-KK)). in index form. Also find deg(omega).
	 */
	deg_omega = 0;
	for (i = 0; i < NN-KK;i++){
		tmp = 0;
		j = (deg_lambda < i) ? deg_lambda : i;
		for(;j >= 0; j--){
			if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
				tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
		}
		if(tmp != 0)
			deg_omega = i;
		omega[i] = Index_of[tmp];
	}
	omega[NN-KK] = A0;

	/*
	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
	 * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
	 */
	for (j = count-1; j >=0; j--) {
		num1 = 0;
		for (i = deg_omega; i >= 0; i--) {
			if (omega[i] != A0)
				num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
		}
		num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
		den = 0;

		/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
		for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
			if(lambda[i+1] != A0)
				den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
		}
		if (den == 0) {
#ifdef DEBUG
			printf("\n ERROR: denominator = 0\n");
#endif
			return -1;
		}
		/* Apply error to data */
		if (num1 != 0) {
			data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
		}
	}
	return count;
}

SPAMarnaudlspam at TakeThisOuTanswer-systems.com says:

Hello!

My name is Arnaud and presentely I work for the Answer-systems company in France.

In fact I also made an ANSI C code in order to code and decode RS codes from 2^1 -1 to 2^24 -1.I also use arrays to store the galois fields elements but I would like to know if you knew something about the "division-free berlekamp-Massey" that could get rid of the inversion needed or a way to compute it efficientely. The main goal of my project is to implement the whole algorithm into a FPGA and it would be interesting to replace the arrays needed to store the galois fields elements by simple dedicated GF multiplier! So if you knew something I would be really greatful! Thanks for answering me! Arnaud

Interested:

Code:

Questions:


file: /Techref/method/error/rs-gp-pk-uoh-199609/rs_c.htm, 99KB, , updated: 2008/4/22 17:31, local time: 2024/11/22 12:05,
TOP NEW HELP FIND: 
3.139.234.124:LOG IN

 ©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions?
Please DO link to this page! Digg it! / MAKE!

<A HREF="http://ecomorder.com/techref/method/error/rs-gp-pk-uoh-199609/rs_c.htm"> Reed-Solomon coding and decoding by Phil Karn</A>

After you find an appropriate page, you are invited to your to this massmind site! (posts will be visible only to you before review) Just type a nice message (short messages are blocked as spam) in the box and press the Post button. (HTML welcomed, but not the <A tag: Instead, use the link box to link to another page. A tutorial is available Members can login to post directly, become page editors, and be credited for their posts.


Link? Put it here: 
if you want a response, please enter your email address: 
Attn spammers: All posts are reviewed before being made visible to anyone other than the poster.
Did you find what you needed?

 

Welcome to ecomorder.com!

 

Welcome to ecomorder.com!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  .