Microsoft® Visual Basic® Scripting Edition Derived Math Functions |
| Language Reference |
|
The following is a list of nonintrinsic math functions that can be derived from the intrinsic math functions:
Function Derived equivalents Secant Sec(X) = 1 / Cos(X) Cosecant Cosec(X) = 1 / Sin(X) Cotangent Cotan(X) = 1 / Tan(X) Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1)) Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) Inverse Secant Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1)) Inverse Cosecant Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) Inverse Cotangent Arccotan(X) = Atn(X) + 2 * Atn(1) Hyperbolic Sine HSin(X) = (Exp(X) - Exp(-X)) / 2 Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2 Hyperbolic Tangent HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X)) Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) - Exp(-X)) Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1)) Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X - 1)) Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 - X)) / 2 Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X) Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X - 1)) / 2 Logarithm to base N LogN(X) = Log(X) / Log(N)
file: /Techref/language/asp/vbs/vbscript/197.htm, 5KB, , updated: 1996/11/22 10:12, local time: 2024/11/22 08:48,
18.191.237.228:LOG IN
|
©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://ecomorder.com/techref/language/asp/vbs/vbscript/197.htm"> Microsoft® Visual Basic® Scripting Edition </A> |
Did you find what you needed? |
Welcome to ecomorder.com! |
Welcome to ecomorder.com! |
.