
© 2000 Ubicom, Inc. All rights reserved. - 1 -

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
SPI is a trademark of Motorola.

All other trademarks mention
tive companies.
Application Note 20
November 2000
Serial Peripheral Interface (SPI) and
Microwire/Plus implementation Using the
SX Communications Controller
1.0 Introduction
Synchronous serial interfaces are widely used to provide
economical board-level interface between different
devices such as microcontrollers, DACs, ADCs and
other. Although there is no single standard for the syn-
chronous serial bus, there are industry accepted guide-
lines based on the two most popular implementations:
SPI (a trademark of Motorola Semiconductor) and
Microwire/Plus (a trademark of National Semiconductor).
Many IC manufacturers produce components that are
compatible with SPI and Microwire/Plus. This documen-
tation describes the operation of SPI and details how it
can be implemented on a SX communications controller
using SPI Virtual PeripheralTM software modules.

2.0 SPI Description
SPI uses a master-slave model and typically has three
signal lines: data input line, data output line and clock
line. Chip select signals from the master are used to
address different slaves on the bus (Figure 2-1). The
hardware realization of such an interface is a simple shift
register. The data bits are shifted in/out MSB (most signif-
icant bit) first. Often the data is shifted simultaneously out
from the output pin and into the input pin. SPI interface
defines only the communication lines and the clock edge,
other parameters vary for different devices. Clock fre-
quencies happen to be anywhere from 100kHz to a few
MHz and word lengths are from 8 to 16 or more bits.

2.1 SIGNAL DESCRIPTIONS
The four basic signals (MOSI, MISO, SCLK and SS) are
described in the following paragraphs.

2.2 MASTER OUT, SLAVE IN
The MOSI line is defined as an output line from the mas-
ter device to an input into the slave devices. The MOSI
line transfers data in one direction only, from the master
to a slave.

2.3 MASTER IN, SLAVE OUT
The MISO line is defined as an input line into the master
device and as an output in a slave device. The MISO line
transfers data in the opposite direction to the MOSI line, it
transfers data from a slave device to the master.

2.4 SERIAL CLOCK
The SCLK line is used to synchronize both data in and
out of a device via the MOSI and MISO lines. The SCLK
line is generated by the master device and thus is an
input into all slave devices.

Figure 2-1. Master-Slave System Configuration

MISO MOSI SCLK

SX SLAVE n

MOSI SCLK SS

SX SLAVE 1SX SLAVE 0

MISO

MOSI

MISO

SCLK

SX MASTER

MOSI SCLKMISO SS SS
www.ubicom.com

ed in this document are property of their respec-

Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller AN20
2.5 SLAVE SELECT
The Slave Select (SS) lines are controlled by the master
to select a slave device. The SS line must be low prior to
data transactions and must stay low for the duration of
the transaction. Each slave device requires its own SS
input line from the master.

The timing diagram of these lines can be seen in Figure
3-1.

3.0 SPI Operation
To initiate the data transfer between a master and slave
device, the SS line must go low. This synchronizes the
slave device with the master. Data can now be trans-
ferred between the master and slave device in one of two
modes: either data is sampled on the rising edge of the
clock or the falling edge of the clock. Figure 3-1 shows
the data/clock timing diagram.

In a slave device a logic low is received on the SS line
and the clock input is at the SCLK pin. This synchronizes
the slave with the master. Data is then received serially at

the MOSI pin. During a write cycle, data is shifted out
onto the MISO pin on clocks from the master device. Fig-
ure 3-2 illustrates the signal line interconnections.

4.0 SX Implementation
On the SX device, the SPI master-slave interface can be
implemented using two Virtual Peripheral software mod-
ules, one for the slave devices and one for the master
device. An SPI demo program that will be described later
in this document, has been developed to demonstrate
the use of these Virtual Peripheral modules.

Features:

• Full duplex, three-wire synchronous transfers
• Clock rate selectable up to 1.72MHz (2.5MHz possible

with slight modifications)
• Master send frequency adjustable up to 1.72MHz
• Slave receive frequency adjustable up to 1.1MHz

• Word length selectable anywhere from 1 – 16bits.
(More than 16bits easily implemented if required)

• Clock polarity is configurable by using the appropriate
command byte

• Arbitrary pins of the SX52BD and SX18/SX20/28AC
devices may be assigned for the SPI interface lines

Four I/O signal lines are required with any SPI communi-
cation:

Master-Out-Slave-In MOSI signal line

Master-In-Slave_Out MISO signal line

Serial Clock SCLK signal line

Slave Select SS signal line

Figure 3-1. Data/Clock Timing Diagram

Sample Input

Rising Edge Mode

SS

SCLK

MSB Bit 6 Bit 1 LSB

Figure 3-2. SPI Master Slave Interconnections

8-bit
Shift Register

8-bit
Shift Register

SPI CLOCK
Generator

MASTER SLAVE

MISO

MISO

MOSI MOSI

 SCLKSCLK
© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

AN20 Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller
4.1 SPIM (SPI MASTER) VIRTUAL PERIPHERAL
(SPIM.SRC)
This Virtual Peripheral provides a simple and efficient
way to send/receive data between SPI compatible slave
devices.

4.2 SPIM CLOCK
SPIM Clock rate can be selected starting from 1.72 MHz
(max) which corresponds to a minimum clock period of
580ns. Clock period can be incremented with 160ns
increments. The maximum clock rate of 2.5MHz can be
achieved by removing part of the program, responsible
for the programmable clock rate. The minimum clock rate
is practically unlimited. Clock polarity is configurable by
using the appropriate command byte.

4.3 SPIM I/O PINS
SPIM controls the MOSI, MISO and SCLK lines. The
user must assign the appropriate control for SS lines.
Arbitrary pins of the SX device can be assigned to the
signal lines used by SPIM.

4.4 SPIM DATA
Word length can be set to anywhere from 1 to 16 bits.
Longer word lengths can be easily implemented if
needed. If necessary, the user may want to add
Read/Write and handshaking signals. This can be easily
implemented without affecting the core SPIM program.

4.5 USING SPIM
To initialize SPIM, the user program must perform the fol-
lowing steps:

• Disable the interrupts
• Initialize SX I/O ports (calling SPIM_INIT)
• Place the outgoing data into the I/O buffer
• Set SS signal low and call SPIM_EXECUTE
Since SPIM is not using any interrupts, it will transfer the
data and return control to user program.

The two-byte send/receive buffer is allocated in memory
as SPIM_LSB and SPIM_MSB. Data is shifted starting
from the most significant bit (MSB). In case of less than
16-bit long data words, the SPIM will automatically align
the MSB of the word to the MSB of the buffer before shift-
ing. No user intervention is required. It is important to
note that the contents of SPIM_LSB and SPIM_MSB are
not preserved during the driver operation since the bits
are always shifted in.

4.6 SPIM CONTROL, STATUS AND I/O DATA
REGISTERS
SPIM_RATE. This byte defines the clock rate. When set
to 1, the maximum clock rate is 1.72 MHz (580ns period).
The actual clock period can be calculated as:

Clock Period = 420 ns + (160 ns x SPIM_RATE)

The one exception to the rule is if SPIM_RATE is zero, in
this case the minimum clock rate of 24.17kHz (41.38µs
Period) is selected.

SPIM_PORT. This register must be configured to point to
the SX Ports (A, B, C, D, or E) which will generate the
SPI Clock signal. For instance:

 spim_port = rb

SPIM_PORTA_MASK,
SPIM_PORTB_MASK,SPIM_PORTC_MASK.These
bytes are the images of SX I/O port direction registers.
The values written into these registers correspond to the
ports direction registers. A value of “1” defines the pin as
an input while a value of “0” defines the pin as an output.
For the master device, all the signal lines must be
defined as outputs except the MISO line.

SPIM_CLK_MASK defines the SPI Clock pin. The pin is
defined by setting the corresponding bit of
SPIM_CLK_MASK. For instance, to define RC1 as the
SPI clock input pin (SCLK):

spim_portc_mask = $fd

spim_port = rc

spim_clk_mask = $02

SPIM_CMD This register is defined as the command and
configuration byte. This byte defines:

• SPI Clock polarity
• Data direction (Read/Write)
• Number of bits to send/receive.
SPIM supports 4 commands, specified by the 4 MSB bits
of the SPIM_CMD byte.

They are defined as:

Practically there is no difference between the GET and
SEND commands. When the I/O buffer is shifted out, the
input data is always shifted in. The different commands
are provided for user convenience and to avoid confu-
sion.

The four LSB bits of the command byte define the word
length.
4 LSB Bits Command
0000 Sets the length to 16 bits

0001 Sets the length to 1 bit

….. …………….

1111 Sets the length to 15 bits

The SPIM_CMD byte also serves as a ready flag. SPIM
will clear this byte upon the completion of data transfer.

The SPIM_STATUS byte provides the error status infor-
mation. It has 1 error flag. Bit 4 is set to 1 when the
SPIS_CMD byte contains an unsupported command.

4 MSB Bits Command
0011 GET WORD in MASTER FAST mode, define

FALLING edge;

0111 GET WORD in MASTER FAST mode, define
RISING edge;

1011 SEND WORD in MASTER FAST mode, define
FALLING edge;

1111 SEND WORD in MASTER FAST mode, define
RISING edge.
© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller AN20
4.7 SPIM ENTRY POINTS
SPIM_INIT. Initialization subroutine. It provides appropri-
ate configuration for the SX I/O pins.

SPIM_EXECUTE. This is the actual Virtual Peripheral
entry point, which may be called either from the interrupt
service routine or from MAIN program.

SPIM_SS_SET. User defined subroutine to set active
level on SS pin.

SPIM_SS_RESET. User defined subroutine to set pas-
sive level on SS pin. In the case of multiple devices on
the SPI bus, the user must provide appropriate control
over the SS signals.

SPIM_ORG. This is the base address of the SPIM Virtual
Peripheral. Typically it will be the next program memory
location, after the user program.

4.8 USING SPIM FROM THE USER PROGRAM

SPIM is now ready for reuse. Repeat from step 4.

5.0 SPIS (SPI Slave) Virtual Peripheral
Description (SPIS.SRC)
This Virtual Peripheral provides a simple and efficient
way to send/get one word of data to/from a SPI compati-
ble MASTER device.

5.1 SPIS CLOCK
SPIS is developed to work with relatively fast SPI
devices. It occupies the CPU during the entire data trans-
fer. Maximum clock rate is 1.1 MHz (900 ns clock period).
The clock rate may vary during data transfer cycle. If the
watchdog timer is enabled, this will limit the minimum
clock rate. One very important aspect to note when using
SPIS is that on a clock pulse a wake-up interrupt is gen-
erated. Now, before SPIS can react to this clock pulse
there is a 220ns delay, including ISR, which is why the

maximum receive speed of SPIS is 1.1MHz. Receiving
data at 1.1MHz is the very maximum speed because of
this interrupt latency, even at this speed SPIS only just
has enough time (20ns) to put data onto the MISO line
before the next rising edge of the clock.

Clock polarity is configurable by using the appropriate
command byte.

5.2 SPIS DATA
Word length can be set to anywhere from 1 to 16 bits.
Longer word lengths could be easily implemented if
needed. SPIS does not make any differentiation between
read and write cycles. The data is clocked in and out
simultaneously.

5.3 SPIS I/O PINS
SPIS makes use of the Wake-UP interrupt from the SS
signal. Therefore, the SS signal must be assigned to one
of the Port B pins. Other signals may use any other free
pins.

5.4 USING SPIS
To initialize SPIS, the user program must disable the
RTCC interrupt and enable the appropriate edge
(wakeup interrupt from the SS pin). SPIS will then wait for
the interrupt from the SS input. When the interrupt
occurs, SPIS will start execution of the send/receive loop,
waiting for SPI clock signal and start processing the
incoming and outgoing data lines. After the predefined
number of clock pulses, SPIS will finish the communica-
tion cycle and exit the interrupt routine. In order to pre-
vent locking of the driver in case of a communication
error, SPIS uses it's internal SPIS_WATCHDOG counter,
which would expire if SPIS has not received the clock
pulse for too long, the data transfer will be aborted.

The two-byte (16 bits) send/receive buffer is allocated in
memory as SPIS_LSB and SPIS_MSB. Data is shifted
starting from the most significant bit. In case of less than
16-bit long data word, the SPIS will automatically align
the MSB of the word to the MSB of the buffer before shift-
ing (no user intervention is required). The contents of
SPIS_LSB and SPIS_MSB are not preserved during the
driver operation since the bits are always shifted in.

1. Make sure that no interrupt is allowed during execu-
tion of SPIM.

2. Verify that the execution parameters are configured
properly:
• SPIM_RATE
• SPIM_PORT_A_MASK
• SPIM_PORT_B_MASK
• SPIM_PORT_C_MASK
• SPIM_PORT
• SPIM_CLK_MASK
• SPIM_CMD

3. Configure I/O ports by calling SPIM_INIT.
4. Verify that SPIM is ready for execution by testing the

SPIM_CMD byte.
5. Place the outgoing data into SPIM_LSB and

SPIM_MSB.
6. Call SPIM_EXECUTE from the interrupt.
7. Test SPIM_CMD for completion and SPIM_STATUS

for errors.
8. Unload the data from SPIM_LSB and SPIM_MSB.
© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

AN20 Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller
5.5 SPIS CONTROL, STATUS AND I/O DATA
REGISTERS
SPIS_WATCHDOG. This byte defines the timeout period
for the SPI slave. If SPIS will not receive the clock signal
within this waiting period, the communication will be
aborted and the error flag will be set. The actual timeout
can be calculated as 160ns multiplied by
SPIS_WATCHDOG.

SPIS_PORTA_MASK,SPIS_PORTB_MASK,
SPIS_PORTC_MASK. These bytes are the images of SX
I/O ports direction registers. They are written to corre-
sponding ports direction registers during SPIS initializa-
tion.

SPIS_WKUP_MASK - SPIS writes SPIS_WKUP_MASK
into Port B Wakeup Enable register.

SPIS_CMD - Command and configuration byte. This byte
defines:

• SPI Clock polarity
• direction (Read/Write)
• number of bits to send/receive

SPIS supports 4 commands, specified by the 4 MSB bits
of the SPIS_CMD byte:

The contents of SPIS_LSB and SPIS_MSB are not pre-
served during the r operation since the bits are always
shifted in even if they don't make any sense.

The four LSB bits of the command byte define the word
length.

4 LSB Bits Command

0000 Sets the length to 16 bits

0001 Sets the length to 1 bit

….. ….............

1111 Sets the length to 15 bits

The SPIS_CMD byte also serves as a ready flag. SPIS
will clear this byte upon the success of data transfer.

SPIS_STATUS. Provides the error status information to
the user program. It has 2 error flags:

bit 4 - set to 1 when the SPIS_CMD byte contains an
unsupported command

bit 7 - set to 1 when the data transfer was not completed
successfully

5.6 SPIS ENTRY POINTS
SPIS_INIT. Initialization subroutine, it provides appropri-
ate configuration for SX I/O pins.

SPIS_EXECUTE. This is the actual VP entry point, which
is normally called from the interrupt service routine.

SPIS_ORG. This is the base address of SPIM VP. Typi-
cally it will be next ROM location, after the user program.

5.7 USING SPIS FROM THE USER PROGRAM

SPIS is now ready for reuse. Repeat from step 3.

4 MSB Bits Command
0001 GET BYTE in SLAVE mode, define FALLING

edge
0101 GET BYTE in SLAVE mode, define RISING edge

1001 SEND BYTE in SLAVE mode, define FALLING
edge

1101 SEND BYTE in SLAVE mode, define RISING
edge

1. Verify that the execution parameters are configured
properly:
• SPIS_WATCHDOG
• SPIS_PORT_A_MASK
• SPIS_PORT_B_MASK
• SPIS_PORT_C_MASK
• SPIS_WKUP_MASK
• SPIS_CMD

2. Call SPIS_INIT
3. Verify that SPIS is ready for execution by testing the

SPIS_CMD byte.
4. Place the outgoing data into SPIS_LSB and

SPIS_MSB
5. Disable the RTCC interrupt and enable the SS inter-

rupt from Port B.
6. Call SPIS_EXECUTE from the interrupt.
7. Test SPIS_CMD for completion and SPIS_STATUS

for errors.
8. Unload the data from SPIS_LSB and SPIS_MSB
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller AN20
6.0 Demo Description
SPI DEMO provides an example of data transfer
between two SX devices through the SPI data bus. SPI
DEMO consists of two programs - SPI DEMOM.SRC and
SPI DEMOS.SRC, which correspond to the SPI Master
and SPI Slave sides accordingly. These demo files have
within them the two VPs described above SPI Master and
SPI Slave.

There are 4 signal lines that connect the Master to the
Slave:

Master-Out-Slave-In MOSI signal line

Master-In-Slave-Out MISO signal line

Serial Clock SCLK signal line

Slave Select SS signal line

The Slave Select (SS) Line from Master to Slave signals
the latter to start sending/receiving data. The word length
is set to 16 bits in this demo (VP permits 1 to 16 bits). SPI
virtual peripherals perform shifting in and out at the same
time, as most hardware SPI implementations do.

The demo works as follows:

– Assuming that Slave has been initialized prior to
Master, the Master sends the predefined word 256
times.The predefined words are in registers
SPI_DEMO_DATA_MSB and
SPIM_DEMO_DATA_LSB.

– The Slave SX is configured to perform the loop-back
function, that is, every time Slave sends to the Mas-
ter whatever it has received from the Master during
the previous transmission.

– After the initial 256 transmissions Master switches
into the loop-back mode.

– The data transfer of the predefined word can be eas-
ily observed with the help of an oscilloscope.

SPI clock period for this demo is 900 ns - maximum clock
rate supported by the SPIS (SPI Slave VP). Data transfer
from the Master side is triggered by RTCC interrupt with
a period of 25.6 microseconds.

To run the SPI demo program connect two SX28AC
devices in a master slave configuration as shown in fig-
ure 6-1, do not forget to connect a common ground. By
connecting an oscilloscope to the signal lines it is possi-
ble to see the data being sent back and forth between the
master and slave devices on each clock pulse.

Figure 6-1. SPI Master-Slave Demo Program Configuration

SCLK

MOSI

MISO

RB0

RB1

RB2

RB3

VSS

SS

SX28AC
SLAVE

RB0

RB2

RB1

RB3

VSS

SX28AC
MASTER
© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

AN20 Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller
Once you are familiar with the SPI demo, the master and
slave VPs can be configured for your exact needs by
writing to the appropriate registers. In Figure 6-2 a scope

capture of the SS and SCLK was taken to show how the
SS line is used to synchronize the clock and data.

6.1 INTERFACE CONSIDERATIONS
To protect the integrity of data exchange when using syn-
chronous serial communication, two aspects must be
considered:

• Serial Data Exchange Timing
• Fan-out/fan-in requirements
Theoretically, infinite devices can access the same inter-
face and be uniquely enabled sequentially in time. In
practice, however the actual number of devices that can
access the same serial interface depends on the follow-
ing: System data transfer rate, system supply require-
ments, capacitive loading, and the fan-in requirements of
the logic families or discrete devices to be interfaced.

Lastly, it is important to take into consideration the mini-
mum response time of the slave to a clock pulse. Using
the current SPI slave Virtual PeripheralTM architecture
there is an inherent response delay of 220ns which limits
the maximum clock speed to which the slave can work
with. This could be reduced by changing the SPIS archi-
tecture, for instance, polling the SCLK instead of using an
interrupt which adds a 100ns delay.

For optimal use of resources of the SX it is advised to
use these Virtual PeripheralTM modules as a guide to
possible implementations but modify them to meet your
exact application requirements.

Figure 6-2. Clock and SS line on slave device

Clock Signal

SS Line on Slave device
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

Lit#: AN20-03

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Tel.: (650) 210-1500
Fax: (650) 210-8715

E-Mail: sales@ubicom.com
Web Site: www.ubicom.com

Serial Peripheral Interface (SPI) and Microwire/Plus implementation Using the SX Communications Controller AN20

