
A Virtual Peripheral DAC: Implementing Pulse Width Modulation

Introduction
This application note presents programming techniques for producing a programmable output voltage by

smoothing a pulse width modulated (PWM) digital output with a simple resistor-capacitor low-pass filter, and
essentially creating a digital to analog converter. This implementation uses the SX's internal interrupt feature to
allow background operation of the code as a virtual peripheral, and uses the Parallax demo board, taking
advantage of Parallax' SX demo software user interface and UART features to allow the SX to communicate
simply and directly with a personal computer via a serial RS232C port.

Figure 1 - Parallax demo board ADC/PWM circuit diagram

How the circuit and program work
The circuit is a simple resistor capacitor network (R5&C1 for pwm0, R7-C2 for pwm1) on each pwm

port pin (see figure 1), which acts as a low-pass filter and smoothes the oscillating digital signal output so that it
appears as a linear voltage whose value is determined by the duty cycle1 of the signal, which is directly controlled
by the 8 bit value in the pwm register.

The interrupt code segment is quite straight forward. The pwm value is added to an accumulator register
during each pass through the interrupt and the pwm output is set to high every time the accumulator overflows.
This technique allows the eight bit value in the pwm register to directly set the duty cycle of the pwm signal
output and hence directly control the voltage on the capacitor.

With the resistor and capacitor values shown, the corner frequency or 3 dB point2 for the low-pass filter
is calculated as follows:

1The duty cycle is the proportion of time which the signal is high or active (i.e. charging the capacitor)
2The 3 dB point is the frequency at which the filter cuts the incoming signal level by 50% (to ½ it's original value). For a low-pass
filter, signals at frequencies higher than the 3 dB point are attenuated even further.

frequency3dB = 1 / (2 * π * R * C) = 1 / (2 * 3.1416 * 10kΩ * 0.1uF) = 159 Hz

In order to generate a fixed voltage from the pwm output from the changing digital pwm signals, a low-
pass filter must be used whose corner frequency is lower than the lowest frequency component of the digital
pwm signal. The length of the pwm cycle varies, depending upon the value in the corresponding pwm register,
but the worst case is a pwm value of either 1 or 0FFh, in which case 256 interrupt passes are required to
complete the pwm cycle3. We can calculate the period between interrupt passes as follows:

period (sec) = mode * prescaler * RETIW value* / osc. frequency, where mode=1 (turbo) or =4 (normal)

So, for the worst case of 256 interrupt passes, at a crystal frequency of 50 MHz, in turbo mode, with a prescaler
of 1, and with an RETIW value of 163, the lowest frequency present in the pwm signal is:

frequencymin = 1 / period * 256 = 50 MHz / (1 * 1 * 163 * 256) = 1.2 kHz

By this we can see that the pwm signal will be excellently smoothed by the resistor and capacitor values chosen,
since the lowest frequency component possible is well above the corner frequency for the low-pass filter.

The only inconvenience that the low-pass filter causes is that it also limits the pwm's output settling time
(i.e. the maximum frequency and linearity if the pwm is being used as a signal generator). With the RC values
shown, the settling time is calculated from the equation V=Vcc (1-e-t/RC) for the charging4 voltage on the
capacitor after time t. If we want to calculate the settling time to eight bit resolution, we have:

V = Vdd (28 - 1) / 28 = Vdd (1 - e-t/RC) so: ln(1/ 28) = -t / RC

 therefore: tsettle = - RC * ln(1 / 28) = - 10kΩ * 0.1uF * ln(1 / 28) = 5.5 msec

So, with the above RC values, a maximum frequency of fmax = 1/ tsettle = 1 / 5.5 ms = 180 Hz is possible
on the pwm outputs for signals that vary if eight bit resolution is required5.

The second 10kΩ resistor attached to each pwm output (i.e. R6 and R8), acts as a current limiting
resistor to avoid discharging the voltage stored on the capacitor in case the output is driving a source which
doesn't have a high input impedance. Ideally, the input impedance of the circuit being driven is at least a couple
orders of magnitude larger (i.e. ≥ 1MΩ) than this resistor value so that the voltage on the capacitor remains
accurate.

Modifications and further options
The Parallax demo board is designed so that port pins adc0 and adc1 can be swapped for pwm's simply

by adjusting the program code. To do this (if you'd like 1-2 more pwm outputs) requires commenting out (or

3With a pwm value of 1, there will only be one carry generated every 256 passes by adding the pwm value to the pwm accumulator.
In the case of a pwm value of 0FFh, only 1 of every 256 passes won't generate a carry (and hence a low at the pwm output).
* The interrupt is triggered each time the RTCC rolls over (counts past 255 and restarts at 0). By loading the OPTION register with
the appropriate value, the RTCC count rate is set to some division of the oscillator frequency (in this case they are equal), which is
the external 50 MHz crystal in this case. At the close of the interrupt sequence, a predefined value is loaded into the W register using
the RETIW instruction which determines the period of the interrupt in RTCC cycles.
4The charging and discharging times are calculated similarly.
5In practise, circuit noise is usually larger than the 8-bit resoltion of the pwm, so that the settling time can be considered as
somewhat less than the calculated value

removing) the adc code section, and reproducing the three lines of pwm0: code once (or twice for two more
pwm outputs), while replacing pwm0 with pwm2, pwm0_acc with pwm2_acc, port_buff.0 with port_buff.46 in
the three code lines. New register definition(s) should also be added in the analog bank for pwm2 & pwm2_acc
(and pwm3 & pwm3_acc, if required). An example follows:

...
analog = $;pwm bank
;
port_buff ds 1 ;buffer - used by all
pwm0 ds 1 ;pwm0 - value
pwm0_acc ds 1 ; - accumulator
pwm1 ds 1 ;pwm1 - value
pwm1_acc ds 1 ; - accumulator
pwm2 ds 1 ;pwm2 - value
pwm2_acc ds 1 ; - accumulator
pwm3 ds 1 ;pwm3 - value
pwm3_acc ds 1 ; - accumulator
...
:pwm0 add pwm0_acc,pwm0 ;adjust pwm0 accumulator

snc ;did it trigger?
setb port_buff.0 ;yes, toggle pwm0 high

:pwm1 add pwm1_acc,pwm1 ;adjust pwm1 accumulator
snc ;did it trigger?
setb port_buff.2 ;yes, toggle pwm1 high

:pwm2 add pwm2_acc,pwm2 ;adjust pwm2 accumulator
snc ;did it trigger?
setb port_buff.4 ;yes, toggle pwm2 high

:pwm3 add pwm3_acc,pwm3 ;adjust pwm3 accumulator
snc ;did it trigger?
setb port_buff.6 ;yes, toggle pwm3 high

;
; <adc code removed except for this one line>

mov rc,port_buff ;update port pins (port RC)
...

6for the 4th pwm output pwm0 should be relaced with pwm3, pwm0_acc with pwm3_acc, and port_buff.0 with port_buff.6

