;*********************************************** ; Complex number magnitude calculation ; using CORDIC algorithm described at ; www.dspguru.com\info\faqs\cordic.htm ; ; Input: ; ReH:ReL, ImH:ImL - complex number (16 bit signed) ; ; Output: ; ReH:ReL - magnitude (16 bit unsigned) ; ImH:ImL - garbage ; ; Temporaries: ; RekH:RekL - Re multipled by k (k=2^-L, L=0,1,2,...15) ; Counter - loop counter ; Temp ; ; Instructions: 147 ; Execution time(worst case including return): ; 18+18+15*(8+2+20+5+7.5*10-2)+60 ~= 1700 instruction cycles ; Notes: ; 1) Precision is 0.028%, depends on how exact ; the division by CORDIC gain is implemented: ; (0.60725293510314) ; a) 1/2+1/8-1/64-1/512 -> 0.028% ; b) 1/2+1/8-1/64-1/512-1/4096 -> 0.012384% ; c) 1/2+1/8-1/64-1/512-1/4096+1/16384 -> 0.002333% ; 2) Range of input data should be restricted so ; that M=sqrt(Re*Re+Im*Im) is less than 65536*0.60725293510314~=39760 ; to prevent overflow in magnitude during calculation ; 3) To reduce execution time, the number of loops can be ; reduced to 8. The angle after rotation the initial ; vector 8 times is less then 0.22381 deg, which is good ; enough precision. Besides, the gain at 8 rotations is smaller ; and closer to the approximated gain, which is used in this code. ; Reduced execution time will be ~850 cycles! ; ; 6 Aug 2000 by Nikolai Golovchenko ;*********************************************** Magnitude16 ;Find absolute value of the vector components sb ReH.7 ;Re = abs(Re) jmp Magnitude16a not ReL not ReH inc ReL snb Z inc ReH Magnitude16a sb ImH.7 ;Im = abs(Im) jmp Magnitude16b not ImL not ImH inc ImL snb Z inc ImH Magnitude16b ;Test imaginary part for zero and if yes, quit mov W, ImL or W, ImH snb Z ret ;quit if zero imaginary part ;Perform first iteration mov W, ImL ;Imk = Im mov ImkL, W mov W, ImH mov ImkH, W mov W, ReL ;Im' = Im - Re sub ImL, W mov W, ReH sb C movsz W, ++ReH sub ImH, W mov W, ImkL ;Re' = Re + Im = Re + Imk add ReL, W mov W, ImkH snb C movsz W, ++ImkH add ReH, W ;Begin loop mov W, #1 mov Counter, W Magnitude16loop ;load scaled values mov W, ImL ;Imk = Im mov ImkL, W mov W, ImH mov ImkH, W mov W, ReL ;Rek = Re mov RekL, W mov W, ReH mov RekH, W ;scale them (1 to 15 right shifts) mov W, Counter ;load counter value to Temp mov Temp, W Magnitude16loop2 clrb C ;unsigned right shift for Rek rr RekH rr RekL mov W, <<ImkH ;signed right shift for Imk rr ImkH rr ImkL decsz Temp jmp Magnitude16loop2 ;update current values mov W, ImkL snb ImH.7 ;if Im < 0 add a phase, if Im >= 0 substract a phase jmp Magnitude16AddPhase ;substract a phase add ReL, W ;Re' = Re + Imk mov W, ImkH snb C movsz W, ++ImkH add ReH, W mov W, RekL ;Im' = Im - Rek sub ImL, W mov W, RekH sb C movsz W, ++RekH sub ImH, W jmp Magnitude16loopend Magnitude16AddPhase ;add a phase snb C ;correct Imk, because shifts of negative movsz W, ++ImkL ;values like (-1 >> 1 = -1) can dec ImkH ;accumulate error. With this correction, inc ImkH ;shifts of negative values will work like ;shifts of positive values (i.e. round to zero) sub ReL, W ;Re' = Re - Imk mov W, ImkH sb C movsz W, ++ImkH sub ReH, W mov W, RekL ;Im' = Im + Rek add ImL, W mov W, RekH snb C movsz W, ++RekH add ImH, W Magnitude16loopend inc Counter sb Counter.4 ;repeat untill counter reaches 16 ;or uncomment this for better performance ; sb Counter.3 ;repeat untill counter reaches 8 jmp Magnitude16loop ;Optional: ;Divide result by 1.64676025786545 (CORDIC gain) ;or multiply by 0.60725293510314 = 1/2+1/8-1/64-1/512 - 0.028% mov W, ReH mov RekH, W mov W, ReL mov RekL, W clrb C rr ReH rr ReL clrb C rr ReH rr ReL clrb C rr ReH rr ReL not ReL not ReH inc ReL snb Z inc ReH clr Temp snb ReH.7 not Temp sub ReL, W mov W, RekH sb C movsz W, ++RekH sub ReH, W sb C dec Temp rr Temp rr ReH rr ReL rr Temp rr ReH rr ReL mov W, <<ReH rr ReH rr ReL mov W, RekL add ReL, W mov W, RekH snb C movsz W, ++RekH add ReH, W clrb C rr ReH rr ReL clrb C rr ReH rr ReL mov W, RekL add ReL, W mov W, RekH snb C movsz W, ++RekH add ReH, W rr ReH rr ReL ;Done! ret ;***********************************************
file: /Techref/scenix/lib/math/vect/mag-ng_sx.htm, 4KB, , updated: 2004/6/10 13:40, local time: 2024/11/29 17:24,
owner: NG--944,
3.146.152.119:LOG IN
|
©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://ecomorder.com/Techref/scenix/lib/math/vect/mag-ng_sx.htm"> SX Microcontroller Math Method </A> |
Did you find what you needed? |
Welcome to ecomorder.com! |
Welcome to ecomorder.com! |
.