/* * Reed-Solomon coding and decoding * Phil Karn (karn at ka9q.ampr.org) August 1997 * * This file is derived from the program "new_rs_erasures.c" by Robert * Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy * (harit at spectra.eng.hawaii.edu), Aug 1995 * * This version is hard-wired to encode and decode the (255,223) code * over GF(256). It contains calls to i386 assembler routines optimized * for the Pentium. */ #include <stdio.h> #include "rs32.h" /* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A, * and Lee & Messerschmitt, Digital Communication p. 453. */ /* 1+x^2+x^3+x^4+x^8 */ int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 }; /* Alpha exponent for the first root of the generator polynomial */ #define B0 1 /* index->polynomial form conversion table */ gf Alpha_to[NN + 1]; /* Polynomial->index form conversion table */ gf Index_of[NN + 1]; /* No legal value in index form represents zero, so * we need a special value for this purpose */ #define A0 (NN) /* Generator polynomial g(x) * Degree of g(x) = 2*TT * has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1) */ gf Gg[NN - KK + 1]; /* Lookup table for multiplying by the 32 generator polynomial terms, * packed 4 terms to each 32-bit word */ unsigned long Gtab[8][256]; /* Lookup table for GF multiplication * Mtab[i][j] = j * alpha^(B0+i) (note limited range of i) */ unsigned char Mtab[NN-KK+1][NN+1]; /* Compute x % NN, where NN is 2**MM - 1, * without a slow divide */ static inline gf modnn(int x) { while (x >= NN) { x -= NN; x = (x >> MM) + (x & NN); } return x; } #define min(a,b) ((a) < (b) ? (a) : (b)) #define CLEAR(a,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = 0;\ } #define COPY(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } #define COPYDOWN(a,b,n) {\ int ci;\ for(ci=(n)-1;ci >=0;ci--)\ (a)[ci] = (b)[ci];\ } /* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m] lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**m) HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: Let @ represent the primitive element commonly called "alpha" that is the root of the primitive polynomial p(x). Then in GF(2^m), for any 0 <= i <= 2^m-2, @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for example the polynomial representation of @^5 would be given by the binary representation of the integer "alpha_to[5]". Similarily, index_of[] can be used as follows: As above, let @ represent the primitive element of GF(2^m) that is the root of the primitive polynomial p(x). In order to find the power of @ (alpha) that has the polynomial representation a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) we consider the integer "i" whose binary representation with a(0) being LSB and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry "index_of[i]". Now, @^index_of[i] is that element whose polynomial representation is (a(0),a(1),a(2),...,a(m-1)). NOTE: The element alpha_to[2^m-1] = 0 always signifying that the representation of "@^infinity" = 0 is (0,0,0,...,0). Similarily, the element index_of[0] = A0 always signifying that the power of alpha which has the polynomial representation (0,0,...,0) is "infinity". */ static void generate_gf(void) { register int i, mask; mask = 1; Alpha_to[MM] = 0; for (i = 0; i < MM; i++) { Alpha_to[i] = mask; Index_of[Alpha_to[i]] = i; /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ if (Pp[i] != 0) Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ mask <<= 1; /* single left-shift */ } Index_of[Alpha_to[MM]] = MM; /* * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by * poly-repr of @^i shifted left one-bit and accounting for any @^MM * term that may occur when poly-repr of @^i is shifted. */ mask >>= 1; for (i = MM + 1; i < NN; i++) { if (Alpha_to[i - 1] >= mask) Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); else Alpha_to[i] = Alpha_to[i - 1] << 1; Index_of[Alpha_to[i]] = i; } Index_of[0] = A0; Alpha_to[NN] = 0; } /* * Obtain the generator polynomial of the TT-error correcting, length * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0, * ... ,(2*TT-1) * * Examples: * * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2. * g(x) = (x+@) (x+@**2) * * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4. * g(x) = (x+1) (x+@) (x+@**2) (x+@**3) */ static void gen_poly(void) { register int i, j; Gg[0] = Alpha_to[B0]; Gg[1] = 1; /* g(x) = (X+@**B0) initially */ for (i = 2; i <= NN - KK; i++) { Gg[i] = 1; /* * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by * (@**(B0+i-1) + x) */ for (j = i - 1; j > 0; j--) if (Gg[j] != 0) Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)]; else Gg[j] = Gg[j - 1]; /* Gg[0] can never be zero */ Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)]; } /* convert Gg[] to index form for quicker encoding */ for (i = 0; i <= NN - KK; i++) Gg[i] = Index_of[Gg[i]]; } /* Generate lookup table for fast encoding * Each table entry contains four packed result per 32-bit word */ static void gen_gtab(void) { int i,ii,j,k,val; memset(Gtab,0,sizeof(Gtab)); for(i=1;i<256;i++){ ii = Index_of[i]; for(j=0;j<8;j++){ for(k=3;k>=0;k--){ val = (Gg[4*j+k] == A0) ? 0 : Alpha_to[modnn(ii+Gg[4*j+k])]; Gtab[j][i] = (Gtab[j][i] << 8) | val; } } } } /* Generate lookup table for fast syndrome computation in the decoder * Given a field element x in polynomial form, the table generated here * when indexed as Mtab[i][x] gives x * alpha**(B0+i) */ static void gen_mtab(void) { int i,j; for(i=0;i<NN-KK;i++){ Mtab[i][0] = 0; for(j=1;j<=NN;j++){ Mtab[i][j] = Alpha_to[modnn(Index_of[j] + B0 + i)]; } } } void init_rs(void) { generate_gf(); gen_poly(); gen_gtab(); gen_mtab(); } /* Errors + erasures decoding of (255,223) RS code */ int rsd32(dtype data[NN], int eras_pos[NN-KK], int no_eras) { int deg_lambda, el, deg_omega; int i, j, r; gf u,q,tmp,num1,num2,den,discr_r; gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly * and syndrome poly */ gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; gf root[NN-KK], reg[NN-KK + 1]; int syn_error, count; unsigned char st[NN-KK]; /*#define noasm */ #ifdef noasm memset(st,0,sizeof(st)); for(i=254;i>=0;i--) for(j=0;j<32;j++) st[j] = data[i] ^ Mtab[j][st[j]]; #else rssyndrome(data,st); #endif /* Convert syndromes to index form, checking for nonzero condition */ syn_error = 0; for(i=0;i<NN-KK;i++){ syn_error |= st[i]; s[i+1] = Index_of[st[i]]; } if (!syn_error) { /* * if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ return 0; } /* Check for and quickly correct the special case of a single error. * This is indicated by * s[i] / s[i+1] = @^-k for all i and some constant k, * (s in polynomial form), or * s[i] - s[i+1] = -k, * (s in index form) * * See Clark & Cain, "Error Correction Coding for Digital * Communications", p209-210. */ if(s[2] != A0 && s[1] != A0){ tmp = modnn(s[2] - s[1] + NN); /* s[] in index form */ for(i=2;i<NN-KK;i++){ if(s[i+1] == A0 || s[i] == A0 || modnn(s[i+1] - s[i] + NN) != tmp) break; } if(i == NN-KK){ /* single error */ data[tmp] ^= Alpha_to[modnn(s[1] - tmp + NN)]; return 1; } } CLEAR(&lambda[1],NN-KK); lambda[0] = 1; if (no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = Alpha_to[eras_pos[0]]; for (i = 1; i < no_eras; i++) { u = eras_pos[i]; for (j = i+1; j > 0; j--) { tmp = Index_of[lambda[j - 1]]; if(tmp != A0) lambda[j] ^= Alpha_to[modnn(u + tmp)]; } } } for(i=0;i<NN-KK+1;i++) b[i] = Index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while (++r <= NN-KK) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++){ if ((lambda[i] != 0) && (s[r - i] != A0)) { discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; } } discr_r = Index_of[discr_r]; /* Index form */ if (discr_r == A0) { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(&b[1],b,NN-KK); b[0] = A0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0 ; i < NN-KK; i++) { if(b[i] != A0) t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; else t[i+1] = lambda[i+1]; } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= NN-KK; i++) b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); } else { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(&b[1],b,NN-KK); b[0] = A0; } COPY(lambda,t,NN-KK+1); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for(i=0;i<NN-KK+1;i++){ lambda[i] = Index_of[lambda[i]]; if(lambda[i] != A0) deg_lambda = i; } /* * Find roots of the error+erasure locator polynomial. By Chien * Search */ COPY(®[1],&lambda[1],NN-KK); count = 0; /* Number of roots of lambda(x) */ for (i = 1; i <= NN; i++) { q = 1; for (j = deg_lambda; j > 0; j--) if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if (!q) { /* store root (index-form) and error location number */ root[count++] = i; if(count == deg_lambda) /* Found all possible roots, no point in continuing */ break; } } #ifdef DEBUG printf("\n Final error positions:\t"); for (i = 0; i < count; i++) printf("%d ", NN - root[i]); printf("\n"); #endif if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ return -1; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(NN-KK)). in index form. Also find deg(omega). */ deg_omega = 0; for (i = 0; i < NN-KK;i++){ tmp = 0; j = (deg_lambda < i) ? deg_lambda : i; for(;j >= 0; j--){ if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; } if(tmp != 0) deg_omega = i; omega[i] = Index_of[tmp]; } omega[NN-KK] = A0; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count-1; j >=0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != A0) num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; } num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { if(lambda[i+1] != A0) den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; } if (den == 0) { #ifdef DEBUG printf("\n ERROR: denominator = 0\n"); #endif return -1; } /* Apply error to data */ if (num1 != 0) { data[NN - root[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; } } return count; }
file: /Techref/method/error/rs-255-223-3-pf-qc-1999/rs32_c.htm, 75KB, , updated: 2000/5/10 12:20, local time: 2024/12/28 11:25,
3.144.6.236:LOG IN
|
©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://ecomorder.com/Techref/method/error/rs-255-223-3-pf-qc-1999/rs32_c.htm"> Colorized Source Code</A> |
Did you find what you needed? |
Welcome to ecomorder.com! |
Welcome to ecomorder.com! |
.